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The purpose of this study was to evaluate the robustness of estimated growth curve
models when there is stationary autocorrelation among manifest variable errors. The
results suggest that when, in practice, growth curve models are fitted to longitudinal
data, alternative rival hypotheses to consider would include growth models that also
specify autoregressive (AR), moving average (MA), and autoregressive moving av-
erage (ARMA) processes. AR (i.e., simplex) processes are commonly found in lon-
gitudinal data and may diminish the ability of a researcher to detect growth if not ex-
plicitly modeled. MA and ARMA processes do not affect the fit of growth models,
but do notably bias some of the parameters.

This study is intended to identify how robust estimated growth curve model pa-
rameters are in the face of stationary autocorrelation among manifest variable er-
rors. Growth curve (GC) models assume temporal manifest variable errors are
uncorrelated. This assumption may be tenable on various substantive grounds, al-
though analysts have long known that nuisance correlations among the manifest
errors often emerge in longitudinal panel data (e.g., Jöreskog, 1979, 1981;
Jöreskog & Sörbom, 1977, 1989; Marsh, 1993; Rogosa, 1979; Sivo, 1997; Sivo &
Willson, 1998, 2000). The problem that correlated errors present is that when they
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are not specified the correlated errors systematically bias estimates for the model
estimated (Marsh & Grayson, 1993, 1994a, 1994b; Sivo, Pan, & Brophy, 2004).
Thus, specification of manifest error correlations is more than simply warranted; it
is mandatory.

Sivo (2001) and Sivo and Willson (2000) identified three stationary time series
panel models that may be specified for longitudinal data. Although a few academic
demonstrations of how to integrate GC models and the autoregressive (AR) model
have been discussed in the literature (e.g., Bollen & Curran, 2004; Curran &
Bollen, 2001; Rovine & Molenaar, 1998a), the integration of GC models with
moving average (MA) and autoregressive moving average (ARMA) panel models
as defined in Sivo (2001) and Sivo and Willson (2000) has yet to be presented. This
integration is important because the simulation results of Sivo and Willson (2000)
suggest that an AR model will not sufficiently account for the effects of
autocorrelation due to MA or ARMA. More broadly, the case for regularly evaluat-
ing panel data for correlated manifest errors, if it has been made at all, has not been
made in a prominent way for analysts employing growth curve modeling. More-
over, even when AR processes are discussed within the context of the GC model,
omitted is any discussion of either MA or ARMA processes. Indeed, no systematic
study has been conducted to investigate the biasing effects of all three stationary
time series processes on GC parameter estimates, and how researchers may model
the effects of these processes to reduce their biasing effects. This study accom-
plishes this, exploiting one of the key features of structural equation modeling
(SEM), the allowance not only of measurement error specification, but of their cor-
relations as well.

THEORETICAL FRAMEWORK

The Typical Latent Growth Curve Model

Modeling growth within the SEM framework is a relatively recent approach for
studying developmental trends. Because SEM latent growth modeling offers more
flexibility in testing different research hypotheses about the developmental trend
than some other analytic techniques (e.g., repeated measures analysis of variance),
many researchers have argued for its superiority (e.g., Curran, 2000; Duncan,
Duncan, Strycker, Li, & Alpert, 1999; Fan, 2003; McArdle & Bell, 2000).

Assuming a series of repeated measurements Xti (t represents the time-ordered
measurements of X, and i represents an individual), the latent GC model for de-
scribing an individual’s growth over this series of repeated measurements is called
the level 1 or within-person model:

Xti = αi + βiλi + εi (1)
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where αi is the intercept of an individual’s growth trajectory (i.e., the initial status
measured at Time 1), βi is the slope of the individual’s growth trajectory (i.e., the
unit change in Xi between two consecutive measurements), λi represents the con-
secutive measurement time points, and εi represents the modeling residual for an
individual.

Because the intercept (α) and the slope (β) are random variables, these individ-
ual model parameters can be represented by the group mean intercept (µα) and
group mean slope (µβ) plus individual variation (ζαi, ζβi) in the following Level 2 or
between-person model:

αi = µα + ζαi

βi = µβ + ζβi (2)

The Level 2 model is often called the unconditional model (e.g., Curran, 2000),
and it assumes that no other predictors in the model account for the variation of in-
dividual intercepts and slopes. The unconditional latent GC model (for eight re-
peated measurements) is represented graphically as the aspect of the SEM model
in Figure 1 excepting the dotted lines.

In a latent GC model as shown in Figure 1 (dotted lines excluded), typically, no
nonzero covariance structure is hypothesized for the residuals (e1–e8) of the ob-
served variables (X1–X8). In most applications, the covariance matrix for the resid-
uals (e1–e8) is simply assumed to be a diagonal matrix.
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FIGURE 1 The linear growth curve with possible first-order autoregressive moving average
processes.



The latent GC model falls within the general class of models addressing
nonstationary temporal processes. Each of the five parameters of the unconditional
model provides answers to very specific questions from which the applied re-
searcher can greatly benefit. The intercept mean indicates the average starting
point for the people under study with respect to the variable in question. The slope
mean indicates the average rate of change over time for the people under study
with respect to the variable in question. The intercept variance indicates the degree
that people vary at the start of the study with respect to the variable in question. The
slope variance indicates the degree to which people vary in terms of their rate of
change over time with respect to the variable in question. The correlation between
the intercept and slope indicates how much of a relation exists between partici-
pants’ starting points in the study and their rate of change with respect to the vari-
able in question.

Interpretation of these five growth parameters is fairly straightforward so long
as the particular covariance structure hypothesized for the residuals (e1–e8) is a di-
agonal matrix. In the context of this study, several questions are raised when resid-
uals are autocorrelated: (a) How confident can we be in our assessment of the
growth parameters when autocorrelated errors are present in the growth data? (b)
How does one detect the degree of bias caused by autocorrelated errors? (c) What
theoretically plausible solutions exist for treating such a nuisance condition?

Stationary Time Series

Stationary time series data may evidence the presence of two processes: AR and
MA (Box & Jenkins, 1976). AR models answer the question, “How is the stability
of a construct over time affected by autocorrelated observed scores?” AR models
are specified to represent the current value of a time series as a function of previous
values of the same time series. Generally,

Xt = αiXt–1 + α2Xt–2 + … + αpXt–p + εt (3)

where Xt denotes an observed score taken at some time point (t) following after the
original level X0 of the series, α denotes a correlation among temporally ordered
scores at some lag (e.g., t – 1 = a lag of 1, t – 2 = a lag of 2), and ε denotes residual
associated with a given occasion (t).

MA models answer the question, “How is the stability of a construct over time
affected by autocorrelated residuals?” MA models are specified to represent the
current value of a time series as a function of autocorrelated residuals. Generally,

Xt = εt – β1 εt–1 – β2 εt–2 – … – βq εt–q (4)

where Xt denotes an observed score taken at some time point (t) following after the
original level X0 of the series, β denotes a correlation among residuals at some lag
(e.g., t – 1 = a lag of 1, t – 2 = a lag of 2), and ε denotes a residual associated with a
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given occasion (t). In the context of SEM, there has been some evidence that the
log likelihood ratio for estimates of pure MA processes is not reliable when such
models are fitted to Toeplitz matrices (Hamaker, Dolan, & Molenaar, 2002). How-
ever, within the context of panel models designed to estimate MA processes, no
such problem has been found (Sivo, 2001; Sivo & Willson, 2000). Not only is the
log likelihood ratio for MA panel models reliable, but the estimation of the MA
processes is unbiased and efficient.

The possibility of both processes being present in the same data supports the
specification of ARMA models:

Xt = α1 Xt–1 + α2 Xt–2 + … + αp Xt–p – β1εt–1 – β2 εt–2 – … – βq εt–q + εt (5)

ARMA models answer the question, “How is the stability of a construct over time
affected by autocorrelated observed scores and residuals?” Time series models
have been increasingly used in the context of SEM in various contexts. With re-
spect to longitudinal panel data, time series models for stationary processes have
been discussed for both single-indicator models (Sivo & Willson, 2000) and multi-
ple-indicator models (Sivo, 2001). Although such models have the potential of be-
ing compatible with GC models, indeed, addressing issues pertinent to the analysis
of all longitudinal data, a full integration of the two types of models has yet to be
discussed. Although there has been some attempt to integrate AR (i.e., simplex)
models with growth models (e.g., Bentler, Newcomb, & Zimmerman, 2002;
Curran & Bollen, 2001), a full integration has yet to be developed, despite the ben-
efit that an integration of MA and ARMA models offers in the face of correlated
temporal errors, the estimate-biasing, nuisance condition all too common to longi-
tudinal panel data. As Sivo (2001) and Sivo and Willson (2000) indicated, MA and
ARMA models allow for the asymmetric specification of correlated residuals.

This study accomplishes two purposes. First, this study introduces how GC
models and MA and ARMA models may be integrated, information previously not
found in the literature. Second, this study investigates the degree to which
autocorrelation in its various forms (AR, MA, and ARMA) biases the estimates
obtained in GC modeling.

Scientific Importance of the Study

This study focuses on a very important issue that has yet to be considered in the GC
modeling literature. What do we do in the face of autocorrelated residuals, so com-
mon to longitudinal data, when we desire to model growth over time? Some stud-
ies academically consider the integration of AR and growth models, but no studies
consider the integration of its MA and ARMA counterparts as specified in Sivo
(2001) and Sivo and Willson (2000). MA and ARMA models allow for the asym-
metric specification of correlated residuals. No other GC study handles this issue,
and previous research testifies to the importance of this issue and the viability of
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the modeling approach advocated in this article. Given that correlated errors can
bias other parameter estimates, and that they are so prevalent in longitudinal data,
how often has GC modeling been employed in practice without the consideration
of MA and ARMA processes, not to mention AR processes?

Research Questions

This study examines how five GC parameter estimates (intercept mean, slope
mean, intercept variance, slope variance, and intercept–slope relation) are affected
by autocorrelation. Specifically, the following research questions are answered in
this study:

1. Which of the five GC parameter estimates are affected by unmodeled
first-order autoregression (AR1)?

2. Which of the five GC parameter estimates are affected by an unmodeled
first-order moving average (MA1) process?

3. Which of the five GC parameter estimates are affected by an unmodeled
first-order autoregressive moving average (AR1-MA1) process?

METHOD

Data Source

The simulation macro program developed using SAS software for the study has
been designed to allow for 200 replications for each of six parametric conditions
for a total of 4 × 4 × 2 × 2 × 2 × 4 = 512 research conditions. In all conditions, the
intercept mean was 1 and the slope mean was 1. The conditions considered include
the following:

1. Four models (GCM, GCAR, GCMA, GCARMA).
2. Sample size (150, 250, 350, 450).
3. Intercept variance (.2, .7).
4. Slope variance (.1, .5).
5. Phi between the intercept and slope (.00, .50).
6. Squared AR/MA coefficients (AR/MA: .00/00; .25/.00; .00/.20; .25/.20).

Clearly, many more gradations of parametric conditions were possible, but the
values were chosen to be large enough to allow for an identification of notable
findings. This selection of values is believed to be discrepant enough to answer the
initial inquiry of whether differences exist, while protecting the study from becom-
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ing unmanageable for interpretation. Follow-up analyses were conducted to ex-
plore further the findings when notable differences were found.

It is important to point out that Rovine and Molenaar (1998b), as well as Stoel
and van den Wittenboer (2003), found that the covariance between the intercept
and slope (phi) is affected by the basis parameters for the time scale chosen when
fitting a model to the data. So, correct estimation of the phi in practice depends on
the basis parameters. The results of the simulations conducted in this study are
based on the assumption the researcher is using the correct basis parameters. So,
conclusions about the effect of either the AR or MA process on the estimation of
phi are accurate assuming the correct basis parameters are chosen.

The data generated for this study consisted of eight occasions. Eight wave data
sets were generated for a number of reasons. The conditions for a Monte Carlo
study must be delimited carefully or else the summary of the findings can be un-
wieldy. Consequently, Monte Carlo studies are better designed when they answer a
few critical questions well. The purpose of this study is to determine the effect of
unmodeled ARMA processes on GC parameter estimates. A generous number of
occasions were considered so that model comparisons could be more likely when
differences truly exist. Should unmodeled ARMA processes be determined to af-
fect GC parameter estimates, a later study will be implemented to examine the lim-
its of such findings.

Procedure

In this study, four latent GC models are estimated for simulated data. The form of
all four models may be visualized in Figure 1, where AR and MA process are pre-
sented with different styled dotted lines (see the figure legend). The four models
include the growth curve model (GC), the growth curve autoregressive (GCAR)
model, the growth curve moving average (GCMA) model, and the growth curve
autoregressive moving average (GCARMA) model. All four eight-wave models
are estimated using the SAS Institute’s (1989) PROC CALIS (Covariance Analy-
sis of Linear Structural Equations).

The research questions are answered by examining the results of a Monte Carlo
simulation study. Data for each combination of parametric conditions were gener-
ated using SAS Institute’s (1989) RANNOR function. The procedure for generat-
ing the AR and MA processes is described in the SAS book, SAS for Monte Carlo
Studies: A guide for quantitative researchers (Fan, Felsovalyi, Sivo, & Keenan,
2002). It is worth noting that an alternative approach to answering the research
questions would have been to record the differences found between the results of
the rival models fitted to the population matrices. In practice, however, random
sampling fluctuations can make it difficult for one to distinguish models that be-
long to the same family of models. Box and Jenkins (1976) made this point specifi-
cally about AR and MA processes. Demonstrating that the models may be differ-
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entiated under random conditions builds the case for the discriminant validity of
the models in practice. For these results to be most practicable, it is important to
examine what difference can be found in the results of the rival models when con-
ditions are imperfect. One of the purposes of a Monte Carlo study is to examine
what happens when statistical assumptions are systematically violated (Fan et al.,
2002). This study is intended to examine how the systematic violation of the as-
sumption of no autocorrelation affects, on average, the estimated GC parameters.
It is important to note whether the differences in the rival model results for the GC
parameters are of such a magnitude that they are evident even in the face of random
sampling fluctuations.

In addition to inspecting the accuracy of the parameter estimates, the following
fit indexes were examined: the Goodness of Fit Index (GFI), Comparative Fit In-
dex (CFI), McDonald’s Centrality Index (Mc), and the Standardized Root Mean
Square Residual Estimate (SRMR). These indexes were chosen because of their
relative merits. The GFI and Mc are stand-alone indexes that have a long history in
SEM research. The CFI is an incremental fit index that indicates how much the fit
of a model improves on the nested null model. The SRMR summarizes the residual
variation.

RESULTS AND DISCUSSION

The results are organized so that the effects of each type of autocorrelation are de-
scribed in the following order: AR, MA, and ARMA. The research questions for
the study were answered by comparing the results obtained for the GC model when
fitted to the AR, MA, or ARMA data to the proper model for each data set. In each
case, the biasing effects of the autocorrelation are first described, followed by a
comparison of the fit results. Although the intercept and slope means were held
constant, each at a value of 1, it was informative to examine the degree to which an
autocorrelation affected their estimation.

The Effect of Unmodeled Lag One AR
on GC Model Parameter Estimates

These results were obtained by comparing the fit of the GC model and the GCAR
model to data with both an AR and GC process. When the effects of AR on the GC
parameters were examined it was readily apparent that estimates were noticeably
biased upward. The mean differences between the parameter estimated for the GC
model and the GCAR model (i.e., the correct model for the data) were all statisti-
cally significant (p < .05; see Table 1). In fact, the between the intercept mean in-
creased on average by 77%, and the slope mean increased by more than 200% (see
Table 2). The intercept variance increased by more than 300%, and this was true re-

222 SIVO, FAN, WITTA



gardless of the value of the intercept variance (.2 or .7). AR likewise increased the
slope variance by more than 300% regardless of the size of the slope variance (.1,
.5). Finally, the average correlation found between the slope and intercept in-
creased on average by more than 200%. Furthermore, when the phi value was set to
0, a very slight correlation between these two parameters was estimated to exist,
with an average of about .10.

The fit results for the GC model were notably poor when fit to the GCAR data.
The GFI was on average, less than .50. The CFI results for the GC model were less
than .81, the Mc less than .70, and the SRMR was greater than .30.

A follow-up analysis in which the AR parameter coefficient value was adjusted
downward to .15 and .05 reveals that the GC model begins to fit acceptably (e.g.,
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TABLE 1
GC Model and GCAR Model Differences With Respect

to Growth Curve Parameter Estimates

Source df Anova SS Mean Square F Value Pr > F

Dependent variable: Intercept mean
Model 1 5057.437445 5057.437445 44458.4 <.0001
N 3 0.045132 0.015044 0.13 0.9409
Model * N 3 0.011329 0.003776 0.03 0.9919
Error 12,792 1455.174933 0.113757

Dependent variable: Slope mean
Model 1 180.6864967 180.6864967 51871.1 <.0001
N 3 0.0019168 0.0006389 0.18 0.9077
Model * N 3 0.0009701 0.0003234 0.09 0.9640
Error 12,792 44.5593630 0.0034834

Dependent variable: Intercept variance
Model 1 17320.07387 17320.07387 16737.3 <.0001
int_var 1 8248.07190 8248.07190 7970.54 <.0001
Model * int_var 1 369.07834 369.07834 356.66 <.0001
Error 1,2796 13241.54997 1.03482

Dependent variable: Slope variance
Model 1 1.75523214 1.75523214 18735.9 <.0001
slp_var 1 0.03392137 0.03392137 362.09 <.0001
Model * slp_var 1 0.02867898 0.02867898 306.13 <.0001
Error 12,796 1.19876369 0.00009368

Dependent variable: Correlation between the intercepts and slopes
Model 1 30.99129777 30.99129777 24433.8 <.0001
phi 1 7.24836538 7.24836538 5714.66 <.0001
Model * phi 1 15.79171523 15.79171523 12450.3 <.0001
Error 12,796 16.23018843 0.00126838

Note. The effects considered in the analysis include model (GCAR vs. GC model),
N (150, 250, 350, 450), int_var (.2, .7), slp_var (.1, .5), and phi (.00, .50).



CFI > .95 and SRMR < .05) with small AR lag values, although the GC estimates
continue to be biased upward to a noticeable degree.

The Effect of an Unmodeled Lag One MA Process
on GC Model Parameter Estimates

These results were obtained by comparing the fit of the GC model and the GCMA
model to data with both an MA and GC process. The GC parameter estimates in
the face of an MA process were different than those for the AR process. The inter-
cept mean, slope mean, and slope variance were all unbiased. Not only were these
growth parameters estimated for the GC model and GCMA each not different to a
statistically significant degree (α = .05), but the estimates were nearly the same.
These findings may be seen in Table 3 when reported model effects are reviewed.
Other effects not of primary concern, such as sample size or parameter condition,
were modeled as a form of control, and so, although the effects are reported, they
are not addressed.

On the other hand, the intercept variance was biased upward on average by .10.
The largest impact on the intercept variance was smaller (set at .2 as opposed to .7).
The introduction of the MA process to the GC model actually led to a modest un-
derestimation of the correlation between the intercept and slope by .05, on average.
This is a result of the increase in the intercept variance in the presence of the MA
process. With the intercept variance increasing and the slope variance remaining
unaffected, the end result is a smaller estimated correlation between the two pa-
rameters.

A follow-up analysis in which the MA parameter coefficient values were set at
.10, .30, and .50 revealed that the intercept variance and intercept slope correlation
values were very biased even when the MA process was dropped to a coefficient of
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TABLE 2
The Biasing Effect of Autoregression on Growth Parameters

Parameter
% Parameter Bias

Due to Autoregression

Intercept mean 77
Slope mean > 200
Slope variance > 300
Intercept variance > 300
Correlation found between the slope and intercept > 200

Note. The data were generated to have a mean intercept and slope of 1; other pa-
rameters were varied—intercept variance (.2, .7), slope variance (.1, .5), and the phi be-
tween the intercept and slope (.00, .50)



.10. The intercept variance became more biased upward as the MA process in-
creased, and the intercept slope correlations, in turn, decreased.

Unlike the fit results obtained for the AR process, the GC model when fit to
GCMA data received fit results that were high relative to the correct model. De-
spite the bias in the two parameter estimates, the fit indexes for the GC model to the
GCMA data were very good (e.g., CFI > .95, SRMR < .05) when fit to data with an
MA process of .20. The CFI and SRMR failed to detect a difference between the
models whatsoever. The GFI and Mc both detected a slight difference, with coeffi-
cient differences on average ranging from .01 or .02 coefficient points.
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TABLE 3
GC Model and GCMA Model Differences With Respect

to Growth Curve Parameter Estimates

Source df Anova SS Mean Square F Value Pr > F

Dependent variable: Intercept mean
Model 1 0.00010735 0.00010735 0.03 0.8668
N 3 0.03808785 0.01269595 3.33 0.0188
Model * N 3 0.00028075 0.00009358 0.02 0.9948
Error 12,792 48.82952486 0.00381719

Dependent variable: Slope mean
Model 1 0.00000468 0.00000468 0.01 0.9386
N 3 0.00418631 0.00139544 1.77 0.1502
Model * N 3 0.00002185 0.00000728 0.01 0.9988
Error 12,792 10.07488076 0.00078759

Dependent variable: Intercept variance
Model 1 0.9188323 0.9188323 36.67 <.0001
int_var 1 271.8176642 271.8176642 10848.1 <.0001
Model * int_var 1 0.1031636 0.1031636 4.12 0.0425
Error 12,796 320.6267668 0.0250568

Dependent variable: Slope variance
Model 1 0.04712015 0.04712015 3.14 0.0764
slp_var 1 0.47372078 0.47372078 31.56 <.0001
Model * slp_var 1 0.19712427 0.19712427 13.13 0.0003
Error 12,796 192.04215080 0.0150080

Dependent variable: Correlation between the intercepts and slopes
Model 1 0.2719933 0.2719933 90.15 <.0001
phi 1 269.4746277 269.4746277 89316.5 <.0001
Model * phi 1 0.7409183 0.7409183 245.58 <.0001
Error 12,796 38.6064867 0.0030171

Note. The effects considered in the analysis include model (GCMA vs. GC model), N (150, 250,
350, 450), int_var (.2, .7), slp_var (.1, .5), and phi (.00, .50).



The Effect of an Unmodeled Lag One ARMA Process
on GC Model Parameter Estimates

These results were obtained by comparing the fit of the GC model and the
GCARMA model to data with both an ARMA and GC process. Results obtained
when the GC model fit to the GCARMA data were very similar to those obtained
for the GCMA data (see Table 4). The intercept mean, slope mean, and slope vari-
ance were all unbiased. The intercept variance and the slope–intercept correlation
were biased, with the upward bias in the intercept variance accounting for the
downward bias of the slope–intercept correlation.
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TABLE 4
GC Model and GCARMA Model Differences With Respect

to Growth Curve Parameter Estimates

Source df Anova SS Mean Square F Value Pr > F

Dependent variable: Intercept mean
Model 1 0.76279598 0.76279598 63.15 <.0001
N 3 0.12583324 0.04194441 3.47 0.0154
Model * N 3 0.18012238 0.06004079 4.97 0.0019
Error 12,792 154.51292310 0.0120789

Dependent variable: Slope mean
Model 1 3703.703336 3703.703336 6747.47 <.0001
N 3 8.367910 2.789303 5.08 0.0016
Model * N 3 8.122422 2.707474 4.93 0.0020
Error 12,792 7021.555950 0.54890

Dependent variable: Intercept variance
Model 1 151.3096557 151.3096557 2121.84 <.0001
int_var
Model *

int_var
1 3.3125023 3.3125023 46.45 <.0001

Error 12,796 912.4922240 0.071311

Dependent variable: Slope variance
Model 1 197.0269376 197.0269376 1505.10 <.0001
slp_var 1 64.2834644 64.2834644 491.06 <.0001
Model *

slp_var
1 15.2065968 15.2065968 116.16 <.0001

Error 12,796 1675.0782850 0.130906

Dependent variable: Correlation  between the intercepts and slopes
Model 1 220.0676988 220.0676988 6254.60 <.0001
phi 1 416.3380048 416.3380048 11832.8 <.0001
Model * phi 1 22.9068449 22.9068449 651.04 <.0001
Error 12,796 450.2264640 0.035185

Note. The effects considered in the analysis include model (GCARMA vs. GC model), N (150,
250, 350, 450), int_var (.2, .7), slp_var (.1, .5), and phi (.00, .50).



A follow-up analysis in which the AR and MA parameter coefficient values
were set at .10, .30, and .50 revealed that the intercept variance and the inter-
cept–slope correlation continued to be very biased even when both the AR and MA
coefficients were both dropped to a value of .10.

The fit results obtained for the GC model were very competitive with the
GCARMA model (the correct model). Modest decrements in fit for the GFI and
Mc indexes were observed, with .01 to .02 coefficient differences observed. None
of the other indexes evidenced any average discrepancy.

DISCUSSION

The results of the study address the concern that GC model parameter estimates
become biased when manifest variable autocorrelations are present. Table 5 sum-
marizes the original findings and Table 6 shows the follow-up findings. These re-
sults suggest that researchers using GC models should consider as alternative com-
peting models GCs that specify, a priori, AR, MA, or ARMA processes as well,
because not doing so may result in inaccurate results. Given the widely reported
finding that errors tend to correlate in longitudinal data, this would seem to be an
important research issue to address.

It appears that when a GC model is fit to data possessing an AR process alone
the fit of the model turns out to be poor, even though a viable GC process is present
in the data. Concern in this case is less about the possibility that a researcher may
incorrectly interpret the biased parameter estimates, given that the researcher is
likely to not interpret the model results at all given its poor fit values. It may happen
that the researcher instead moves to a different set of models altogether or simply
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TABLE 5
Summary of Findings

GCAR (.25) GCMA (.20) GCARMA (.25/20)

Intercept mean Upward biased Unbiased Unbiased
Slope mean Upward biased Unbiased Unbiased
Intercept variance Upward biased Upward biased Upward biased
Slope variance Upward biased Unbiased Unbiased
Slope-intercept covariance Upward biased Downward biased Downward biased
Average fit index results GFI = .50

CFI = .81
SRMR = .30

GFI > .95
CFI > .95
SRMR < .05

GFI > .95
CFI > .95
SRMR < .05

Note. This table summarizes the effect of unmodeled ARMA processes on GC parameter esti-
mates. GCAR = growth curve autoregressive; GCMA = growth curve moving average; GCARMA =
growth curve autoregressive moving average; GFI = Goodness of Fit Index; CFI = Comparative Fit In-
dex; SRMR = Standardized Root Mean square Residual Estimate.



quits. So, this study would advise that when a researcher has at least four occasions
and a GC model does not fit well, it is reasonable to consider specifying an AR
component in the model to rule this possibility out. Given the prevalence of AR
(simplex) models in longitudinal research, it is reasonable to test the GCAR as a ri-
val hypothesis.

This study would also caution researchers from fitting a GC model without con-
sidering as a rival hypothesis a GCMA or GCARMA model. GC models, it has
been observed, often fit data with an MA or ARMA process very well. Given that
the slope–intercept relation may be underestimated due at least in part to the in-
crease in the intercept variance, it is reasonable to consider testing this possibility
in practice. MA models and ARMA models are two of the three stationary models
that Box and Jenkins (1976) identified as commonly found in time series data.
Both MA and ARMA processes along with AR processes form a tight family of
stationary models. Given that AR (simplex) processes have been quite often found
in longitudinal data as well, it would be logically consistent to test for the presence
of the MA and ARMA counterparts.

The utility of the results reported in this article are delimited by the conditions
considered. The purpose of this study was to investigate what effect unmodeled
ARMA processes have on GC parameters. Now that such evidence exists, future
studies should focus on other relevant conditions that apply to longitudinal re-
searchers. Although the findings of this study indeed suggest that unmodeled
ARMA processes will effect GC parameters, it is unknown how many occasions
are needed to identify such an effect. This study considered eight occasions. A
study focusing on fewer occasions is necessary to determine whether the conclu-
sions of the study hold.
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TABLE 6
Summary of Follow-Up Findings

GCAR
(AR = .15, .05)

GCMA
(MA = .1, .3, .5)

GCARMA
(AR & MA=.1,.3,.5)

Intercept mean Upward biased Unbiased Unbiased
Slope mean Upward biased Unbiased Unbiased
Intercept variance Upward biased Upward biased Upward biased
Slope variance Upward biased Unbiased Unbiased
Slope-intercept covariance Upward biased Downward biased Downward biased
Average fit index results When AR ≤ .05

GFI > .95
CFI > .95
SRMR < .05

GFI > .95
CFI > .95
SRMR < .05

GFI > .95
CFI > .95
SRMR < .05

Note. This table summarizes the effect of unmodeled ARMA processes on GC parameter
estimates



Although this study does not consider squared autocorrelation processes higher
than .25 for the AR and .25 for the MA, it is reasonable to conclude that if certain
GC parameters are affected by .25 AR and .25 MA processes, they would also be
affected by parameters exceeding these coefficients, respectively. What is not
known, perhaps, is whether other GC parameters, now viewed as unaffected by AR
or MA processes, will indeed be affected if the coefficient for the process were in-
creased high enough. This point made, it is also true that mathematical limits exist
for the correlation values of AR and MA processes. The standardized equations re-
quire mathematically that as AR or MA coefficients increase, the magnitude of
other model parameters or the error term must decrease. At some limit, all other
parameters staying the same, as either the AR or MA coefficients increase, the er-
ror in the model must decrease to zero. Likewise, at some limit, holding the error in
the model constant, as either the AR or MA coefficients increase, the growth pa-
rameters must decrease. The premise of this study was that researchers most inter-
ested in the findings would have a strong theoretical reason for hypothesizing
growth, but perhaps would have to contend with correlated errors. Giving the
growth parameters’ sufficient prominence in the data and allowing for some uncer-
tainty (error), it was decided that no more than moderate AR and MA parameter
conditions would be mathematically possible for this study. It is important to note
that the condition in this study of a squared .25 AR or MA coefficient is actually a
.50 AR or MA coefficient. (The .50 MA coefficient was considered in the fol-
low-up studies reported in the results.) Therefore, enough room was allowed in the
simulated variable variances for prominent AR and MA effects.

Yuan, Marshall, and Bentler (2003) treated the issue of model misspecification
on parameter estimates in more general terms. Yuan et al., although advocating
reasoned approaches to model modification, cautioned that even after modeling
the effects of latent variables, manifest variables may still be correlated due to,
among other things, test–retest effects characteristic of longitudinal data. Yuan et
al. found that estimated parameters in a misspecified model may not be biased
much by the misspecification so long as these parameters are not closely related to
the misspecification. The results of this study suggest that certain GC parameters
are closely related to AR parameters, whereas others are more closely related to
MA parameters as the degree of bias for given GC parameters depends on which
process is at hand. Interpretation of the GC parameters without recognizing and
modeling AR or MA processes will lead to a misunderstanding of the GC results.
New procedures for identifying the best models in the face of misspecification are
becoming more prominent. Such procedures offer promise for identifying not only
the ARMA processes discussed in this article, but other time-varying processes
that could very well bias parameter estimates. For example, Marcoulides and
Drezner (2001), and more recently Marcoulides and Schumacker (2004), indicated
that many researchers acknowledge that SEM model search procedures are going
to become an unavoidable step in applied SEM research. This conclusion is consis-
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tent with the finding of Yuan et al. (2003) that misspecifications differentially af-
fect parameters according to their connection with such parameters in the model.
Without search routines how is one to know where such misspecifications may ex-
ist and consequently which estimated parameters are otherwise biased? These
search routines are computationally intensive in terms of the number of equations
that must be considered, but there has been some recent success in the way of new
algorithms capable of automating SEM specification searches (Marcoulides &
Schumacker, 2004). These procedures will be particularly helpful in identifying
time-dependent processes such as ARMA processes in the face of random sam-
pling fluctuations.
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